COP 3223: C Programming
Spring 2009

Dynamic Storage Structures In C — Part 2

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3223/spr2009/sectionl

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3223: C Programming (Dynamic Structures —Part2) Pagel © Dr. Mark J. Llewellyn

Dynamically Allocated Arrays

« The last example In the previous set of notes created a
dynamically allocated array using the malloc memory allocation

function. We’ll start off this set of notes using essentially the same
example, but this time will use the calloc function to allocate

the memory for the array. Other than this, the two programs are

Identical.

 Recall that calloc clears the memory locations by initializing

every bit in the allocated block to O.

The example below illustrates this technique:

struct twoDPoint {int x, y} *ptr;

ptr = calloc(l, sizeof(struct twoDPoint));

As an aside on calloc, although it is most commonly used with arrays, it can be used to
allocate memory for any object. By invoking calloc with the constant value 1 as its first
argument, you can allocate space for a single data item (object/structure/type) of any type.

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 2

© Dr. Mark J. Llewellyn

s

dynamic arrays using calloc.c

1 //Dyvnamic Structurss In C - Part 2 - dynamically allocated arrays using calloc
2 //April 21, 2009 Fritten byv: Mark Ll=swvellvn
3
4 $include <stdio.h> Notice the difference in
L #include <stdlib.h> the callto calloc
£ compared tomalloc.
7 int maini()
8 {
2 int *ptr: /S /pointer teo an dynamic array
18 int n; number of integer from kevboard
11 int i //Sloop control vari
12
13 printf ("How many integer wvaluesz Ao vou want to store? ya"):
14 gcanf ("Ed4d", &n):; SAresd in n
15 if ((ptr = calloc(n, =izeof(int))) == WULL)} {
16 printf ("Sorry, couldn't allocate that much space.’n"):;
17?7 Y/ /end if stmt
18 else {
12 for (i = 0; i < m; i++){
28 printf ("Enter number d: ", i):
21 scanf ("¥d", &ptr[il):; / notice pointer being us=ed 45 &4 normal array na
22 Y Fend for stmt
23 printf ("“n'\nThe array contains:n"):
24 for (i = 07 i < ny i++) 4
25 printf ("ptr[%d] = zd\n", i, ptr[i]l):
26 Y/ /end for stmt
27
28 princf ("wo\n") ;
29 system ("FLUTSE"™) ;
3a return O;
COP 3223: C Programming (Dynamic Structures —Part2) Page3 © Dr. Mark J. Llewellyn

Using The realloc Function

« The realloc function iIs used to resize a previously

dynamically allocated block of memory. It can be either
Increased or decreased in size depending on the need.

« The realloc function must be invoked with a first
parameter that is a pointer to a block that was previously
returned by an invocation of either malloc, calloc, oOr
realloc. If any other pointer is passed to realloc, the
results will be unpredictable.

« The following example illustrates a common usage of the
realloc function. In this example, an array of characters

(a string) 1s allocated using malloc and then subsequently
resized using realloc to allow an increase in the length of
the string.

’

COP 3223: C Programming (Dynamic Structures — Part 2) Page 4 © Dr. Mark J. Llewellyn g’)l

anh example uzing realloc.c

4 f#include <=stdioc.h>
5 #include <stdlib.h> Initial allocation only allocates 5

b #define ¥ 5

7

8 int main{()

|
18
11
12
13
14
15
16
17?7
18
17
28
21
22
23
24
25
26
27
28
27
3
I1
32
33

bytes O not enough room to hold
both my first and last names.

char *ptrl,
int 17 //loop contro

if ((ptrl = malloc(MN)) == HNUOLL) {
printf ("Sorry, couldn't allocated memory for ptrlin™);
else { Reallocation using realloc increases the

strepy (ptrl, "Mark™) :
puts (ptrl) ;

allocation by 10 bytes, thus allowing enough
room for my last name in the string.

L (R |

SANow I remembersd et I wanted to add my last name teo the string - dohk!
if ((ptrl = realloc(ptrl, HN+10)) == NUOLL) {
printf ("Sorry, couldn't allocated memory for ptrlin™);
Frfend 1f stmt
else {
strcat (ptrl, "™ Llewellyvn™):
puts (prrl) @l C\Courses\COP 3223 ... (ol o[k b S|

printf ("\n") ; ark -

=Ll =
—LiLd =

[

- e
152 SCIMLC

ark Llewelluyn

princf ("\n\n") ;
system("PATSE™) ;

ress any key to continue . T

retorn O

o] ol oa

]

oy -
el €L il L

COP 3223: C Programming (Dynamic Structures —Part2) Page5 © Dr. Mark J. Llewellyn

Rules To Know When Using realloc

The C standard spells out several different rules that dictate
how the realloc function behaves:

When it expands a memory block, realloc does not

Initialize the bytes that are added to the block, even if the
original block was allocated using calloc.

If realloc cannot expand a memory block as requested, it

returns a null pointer. The data in the original memory block
IS unchanged.

If realloc Is called with a null pointer as its first
argument, it behaves exactly asmalloc.

If realloc is called with O as its second argument, it frees
the memory block.
#

COP 3223: C Programming (Dynamic Structures — Part 2) Page 6 © Dr. Mark J. Llewellyn g’)l

Freeing Dynamic Memory Allocations

e When the malloc, calloc, and realloc functions

obtain memory, it Is allocated from the computer’s heap
memory.

« Calling these functions too often or requesting very large
blocks of memory can exhaust the heap memory causing
the functions to return null pointers.

« Programs can also loose track of allocated memory blocks
through errors in programming logic. Such “lost memory”
space Is typically not recoverable until the program
terminates, which means that such blocks are no longer
able to be allocated to any executing program, even though
they are not actually being used by any program.

¢

COP 3223: C Programming (Dynamic Structures — Part 2) Page 7 © Dr. Mark J. Llewellyn g’)l

Freeing Dynamic Memory Allocations

« To see how dynamically allocated memory can be “lost”
through lack of attention by a programmer; consider the
following scenario:

After line 4 is
executed this
memory location is
inaccessible by the
program!

1. int *ptrl, *ptr2; //pointers to int
2. ptrl = malloc(sizeof(int))
3. ptr2 = malloc(sizeof (int));
4. ptrl = ptr2; //move ptrl /
v
ptrl T—> pird ™
otr2 |- ptr2 >
Effect of lines 2 and 3 Effect of line 4

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 8

&
© Dr. Mark J. Llewellyn gjj

The free Function

« C provides the free function in <stdlib.h> to be used by
the programmer to return memory no longer needed to the
heap.

e The prototype for this function is: void free (void *ptr);

« Using the free function is quite easy, simply pass it a pointer
to a memory block that is no longer needed and the system will
return it to the heap memory.

« The proper way to have handled the previous example would
be:

. int *ptrl, *ptr2; //pointers to int
. ptrl = malloc(sizeof (int));
. ptr2 = malloc(sizeof (int));

. free(ptrl); //free int referenced by ptrl

a s W N =

. ptrl = ptr2; //reassign ptrl

#
COP 3223: C Programming (Dynamic Structures —Part2) Page9 © Dr. Mark J. Llewellyn @j

Dynamically Allocated Self-Referential Structures

« Dynamic storage allocation is extremely useful for building
many data structures common to an enormous range of
applications.

« Some data structures that are typically constructed using
dynamic memory are linked lists, stack, queues, trees, and
graphs. If you go on in Computer Science you will become
familiar with all of these data structures (and many more).

« We’ll introduce you this concept using the linked list as an
example, which can be applied to a very wide range of
problems.

« Data structures of this type are said to be made up of nodes. A
node i1s simply an object capable of holding some information.
For our purposes, think of anode asa struct.

’

COP 3223: C Programming (Dynamic Structures — Part 2) Page 10 © Dr. Mark J. Llewellyn g’)l

Dynamically Allocated Self-Referential Structures

« The nodes of data structures that are self-referential simply
contain a member which Is a pointer to another node of the
same type.

« The pointer in one node is used to point to the next node In
some logical ordering of the nodes.

« By chaining a number of nodes together using their pointer
member, you create a linked list.

« Conceptually a linked list looks like this:

—» —» —» —» —— null

#
COP 3223: C Programming (Dynamic Structures —Part2) Page 1l © Dr. Mark J. Llewellyn @j

Dynamically Allocated Self-Referential Structures

« The one thing missing from the previous conceptual view of the
linked list, is that we need some way to know where the logical
beginning of the list is located. As you would expect, this is
done with a pointer. So, the complete conceptual picture of a
linked list actually looks like the one below:

—p —»p —>p

— P

ptr

——> o——— null

There i1s no limit to the number of pointers that
might reference nodes in a linked list. Although not
common it would be possible to have a pointer
reference each node in the list. Normally, a single

node Is used to traverse or “walk” a list using the
self-referential links to the next logical node. The
following example illustrated both extremes.

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 12

© Dr. Mark J. Llewellyn

s

J IMkedlmtEHamph1.c|

1 //Dyvnamic Structures In & - Part 2 - link=ed list example
2 //April 24, 2008 Written by: Mark Llewellyr
3 |
4 $include <=stdio.h>
L #include <=tdlib.h>
6 #define MRX 10
7
8 struoct alMNode{
? char letter:;
18 struct alNode *next:;
11 };
12 typedef struct alode node:
13
14 void printlist (node *ptr)
15 {
16 node *localPtr; //local polinter move down 1list
17
18 localPtr = ptr; // assign pointer location
19 while (localPtr '= HULL) {
28 printf("%c", localPtr->letter);
21 localPtr = localPtr->next;
22 Y//end wvhile stmt) .
29 printf ("\n\n") : Notice the pointer used to move
24 return: down the list is being reassigned to
25 }//end printlist functieon the value in the next field of the
26 current node.
COP 3223: C Programming (Dynamic Structures — Part 2) Page 13 © Dr. Mark J. Llewellyn

—l —

linked list example 1.c

27 int main{)

28

27 node *ptrl, *ptr2, *ptr3, *ptr4; pointers to node objects

38

31 ptrl = malloc(sizeof (node)) : Notice that since all the variables are
32 ptr2 = malloc(sizeof (node)); pointers to structures that the structure
33 ptr3 = malloc(sizeof (node}); pointer operator is necessary to

g; prrd = malloc(sizeof (node reference the various member fields in
36 ptrl->letter = "M': the structure.

37 ptr2-s>letter = 'a';

38 ptr3i-»letcter = 'r';

39 prtrd4->letcter = 'k';

:? Each nodes next field is assigned to point to
45 o1 sment oo (reference) the next node in the correct logical
ri—s=nex = s ;

B _F _ order in which the list is to be maintained.
43 ptrZ-»next = ptr3;
44 ptr3->next = ptr4;
45 ptrd4->next = NULL; [.)
46 & C\Courses\COP HEZE-Cngramml...t':' =)
4% printList (ptrl); Mark R
48 —
42 system("PAUSE") ; Press any key to continue . . . _ i
LA retorn 0: ¥
%1 }//=nd main functieon q‘ p(_
52 |

COP 3223: C Programming (Dynamic Structures — Part 2) Page 14 © Dr. Mark J. Llewellyn

A Closer Look At The Example

* In the previous example, the list nodes are constructed
dynamically using malloc, one node at a time. The

resulting structure looks like the one shown below:

——— null

letter M a r
next — > —T—Pp o—
: : :
ptrl ptr2 ptr3

ptr4

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 15

© Dr. Mark J. Llewellyn

Manipulating Linked List Nodes

 The nodes of a linked list can be maintained in any logical
order that the programmer desires for the application at hand.
Alphabetical and numerical orderings are obviously quite
common, but any logical ordering can be maintained
(including random).

« Common operations on linked lists include, traversing the
list from one end to the other or partial traversing. This Is
often referred to as “walking the list”. Inserting new
elements, deleting existing elements, and modify the
contents of existing elements are also common operations.

« Let’s first consider deleting a node from a list. Let’s suppose
In the initial list shown on the next page that we want to

delete the node containing 6.
¢

COP 3223: C Programming (Dynamic Structures — Part 2) Page 16 © Dr. Mark J. Llewellyn g’)l

Manipulating Linked List Nodes - Deletion

| Initial list |

2 | » 4 |e1T—» 6 |°* —» 8 [e1T—» 10 | ° —» null

ptr

I Step 1 to delete 6: walk to the node containing 6 with a trailing pointer following us

2 |e » 4 |e1—» 6 |e1T—» 8 |eT—» 10 | * —»> null

} } i
: : :

previous current

ptr

COP 3223: C Programming (Dynamic Structures — Part 2) Page 17 © Dr. Mark J. Llewellyn

Step 2: set previous.next to current.next I

2 |e1T—> 4 | 6 |T—» 8 |eT—» 10 | =— null
ptr previous current

I Step 3: free current node I
2 |eT—>» 4 | o 8 | & 10 | «— null

a

previous current

ptr

COP 3223: C Programming (Dynamic Structures — Part 2) Page 18 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Deletion

« Notice that our deletion of the node containing 6 occurred in
the middle of the list. What would happen if we needed to
delete the first or last node In the list? Would our technique
need modification?

« The answer is yes If we need to delete the first node in the

list. The answer Is no If we need to delete the last node In the
list.

« S0, deleting the first node in the list Is a special case. It’s

Illustrated on the next page, where we need to delete the
node containing 2.

COP 3223: C Programming (Dynamic Structures — Part 2) Page 19 © Dr. Mark J. Llewellyn g’)l

Manipulating Linked List Nodes - Deletion

I Step 1: walk puts ptr and current at same node I

2 |e4—> 4 |e—> 6 |1—>f 8

L

ptr

current

I Step 2: set ptr to ptr->next and free current.

4 |e1—> 6 |eT—> 8

|

ptr

current

10 | » —» null

10 | =— null

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 20

© Dr. Mark J. Llewellyn

Manipulating Linked List Nodes — Insertion

* Now let’s consider inserting a new node into a list.

« As before, we’ll need to walk the list to the correct insertion
point and we’ll maintain a trailing pointer.

« Notice that the insertion point will be between the current
pointer and the trailing pointer.

« The example on the following pages illustrates a typical mid-
list insertion. In this case, we want to insert a new node with

the value 5 in its proper location in the list.

”
COP 3223: C Programming (Dynamic Structures — Part 2) Page21 © Dr. Mark J. Llewellyn g);

Manipulating Linked List Nodes - Insertion

| Initial list |

2 °®

|

ptr

10 | » —» null

I Step 1 to insert 5: walk to the node containing 6 with a trailing pointer following us

2 | ® > 4 —» 6 —» 8 | e —» 10 | ® —» null
ptr previous current
COP 3223: C Programming (Dynamic Structures — Part 2) Page 22 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Insertion

I Step 2: create new node.

2

—>

|

ptr

4

—» 6

previous

T

!

T

!

current

10 | &=—» null

new

I Step 3: set previous-next to new and new->next to current.

2 —» 4 6 |eT—» 8 |eT—» 10 | =T null
\
| | l . »| 5
otr previous current new
COP 3223: C Programming (Dynamic Structures — Part 2) Page 23 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Deletion

« What would happen if we needed to insert a new first or last
node in the list? Would our technigue need modification?

« The answer Is yes in both cases this time.

« S0, Inserting a new first node in the list and a new last node
are both special cases. They are illustrated on the next

couple of pages, where we want to insert 1 and 11 into the
list.

#
COP 3223: C Programming (Dynamic Structures — Part 2) Page 24 © Dr. Mark J. Llewellyn @j

I Step 1: insert 1 create new node (at beginning of the list). I

2

|

ptr

—>

4

.——>

6

.——>

new

8

Manipulating Linked List Nodes - Insertion

—>

10

I Step 2: set new->next to ptr and ptr to new.

—>

2 |e1T—> 4 [e1—> 6
—r—> 1
[Sy
new
ptr

——p null

10

— null

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 25

© Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Insertion

I Step 1: insert 11 create new node (at end of the list).

2 |e1T—» 4 |e—>» 6 |—» 8 |et—» 10 | *—» null
l i l | 11
otr previous current NewW
I Step 2: set new->next to current->next (null) and current->next to new. I
2 | e—4— 4 —> 6 —»{ 8 | ——» 10 ‘\\nuux
i [[mundElL
new
ptr previous current
COP 3223: C Programming (Dynamic Structures — Part 2) Page 26 © Dr. Mark J. Llewellyn 6

Manipulating Linked List Nodes

« The following example program combines all of these cases
Into a single program that will build and maintain a linked
list in alphabetic ordering of the characters entered by the
user.

« [tis a menu driven program that gives the user the choice of
Inserting or deleting an element. The list is initially empty
and after each operation the list is drawn out so you can see
the effect of the operation.

e Again the program is too large to put into the notes (170
lines), only selected parts are shown, but the entire program
IS available on the web site so download it an play around
with it.

¢

COP 3223: C Programming (Dynamic Structures — Part 2) Page 27 © Dr. Mark J. Llewellyn g’)l

J a big linked list example.c

= I = B (= T Y S T

R R e e
R CR .~ T--IE - R I N TR T -

24
25
26
27
28

AfDvnamic Structures In © - Part 2 - A large linked list program

A4/ This program creates and maintains 2 1ist of characters i1n alphabetic order

A4 The user has two basic options: 1 add a8 nev character to the

Fifdelete an existing charcater from the list
AAfApril 23, 2009 Fritten by: Mark Llewe=ellvn

#include <stdio.h>
$include <stdlib.h>
#define TRUE 1
#define FLALSE O

A4 melf-referential structurs
stroct listHode {
char data; // each listNeode contains a character
stroct listNode *nextPtr: // pointer to next nods
Y S/ end structure listNods/

list, and 2

typedef stroct listNode ListHode; // synonvm for struct listNode

typedef ListNode *ListNHodePtr; // svnonvm for ListNods*

A4 drav menu
wvold drawMenu()

{
printf("Enter your choice:\n"
" 1 to insert an element into the list.\n"
" 2 to delete an element from the listc.\n"
" 3 to end.\n")

Y S end dravM=nu function

COP 3223: C Programming (Dynamic Structures — Part 2) Page 28 © Dr. Mark J. Llewellyn

a big linked lizt example.c

31 void insertc(ListHodePtr *sFtr,

char wvalue)

32

33 Li=ztNodePtr newPtr; A pointer to nev nods

34 ListNodePtr previousPtr; /7 pointer to previous nodes in list

35 ListNodePtr currentPtr:; // pointer to current node in list

36

37 newPtr = malloc(sizeof (ListNode)): ./ create nods

38

39 if (newPtr != NULL) { // is space availabkle

40 newPtr->data = wvalue: // place wvalus in nods

41 newPtr->nextPtr = NULL; // node does not link to another node
42 previousPtr = WULL;

43 currentPcr = *3Ftr;

44 A4 loop toe find the correct location in the list to insert nev node
45 while ([currentPtr '= HUOLL && wvalue > currentPtr->data) 1
46 previousPtr = curr-—+Ne=e fdmmp Lo ...

47 currentPtr = carréﬁgﬁggﬂ;%gggggj: A5 .. next nods

48 Y/ end while stmt

49 /¢ insert nev node at beginning of list

LA if { previousPtr == HNULL)

% | newPtr-»>nextPtr = *sPrr:;

L2 *3Ptr = newPFtr;

L3 Y /S end 1f stmt

L4 else { // insert nev node betwvesn previousPtr and curr=entFPtr
L4 previousPtr-»nextPtr = newPtr:

LE newPtr->nextPtcr = currentPFtr;

LY Y/ end =ls= stmt

Le Y//end 1f stmt

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 29

© Dr. Mark J. Llewellyn

K:ACOP 3223 - S5pring 2009%C 0P 3223 Program Files\Dyna... »

Enter your choice:
1 to insert an element into the list.
2 to delete an element from the list.
3 to end.

7 4

Enter a character: h

The list is:

h —>» HULL

e !

Enter a character: m
The list is:

h —> m —2>» HULL

1

Enter a character: »p
The list is:

h —> m —2>» » —2>» HULL

1

Enter a character: w

The list is:

h —> m —2»> » —2>» w —2» HULL

T 2

Enter character to be deleted: w
w deleted.

The list is:

h —> m —2>»> » —2>» HULL

[

B

COP 3223: C Programming (Dynamic Structures — Part 2) Page 30

© Dr. Mark J. Llewellyn

THE END

COP 3223: C Programming (Dynamic Structures — Part 2)

Page 31

© Dr. Mark J. Llewellyn

