
COP 3223: C Programming (Dynamic Structures – Part 2) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Dynamic Storage Structures In C – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Dynamic Structures – Part 2) Page 2 © Dr. Mark J. Llewellyn

Dynamically Allocated Arrays
• The last example in the previous set of notes created a

dynamically allocated array using the malloc memory allocation

function. We’ll start off this set of notes using essentially the same

example, but this time will use the calloc function to allocate

the memory for the array. Other than this, the two programs are

identical.

• Recall that calloc clears the memory locations by initializing

every bit in the allocated block to 0.

As an aside on calloc, although it is most commonly used with arrays, it can be used to

allocate memory for any object. By invoking calloc with the constant value 1 as its first

argument, you can allocate space for a single data item (object/structure/type) of any type.

The example below illustrates this technique:

struct twoDPoint {int x, y} *ptr;

ptr = calloc(1, sizeof(struct twoDPoint));

COP 3223: C Programming (Dynamic Structures – Part 2) Page 3 © Dr. Mark J. Llewellyn

Notice the difference in
the call to calloc

compared to malloc.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 4 © Dr. Mark J. Llewellyn

Using The realloc Function

• The realloc function is used to resize a previously

dynamically allocated block of memory. It can be either

increased or decreased in size depending on the need.

• The realloc function must be invoked with a first

parameter that is a pointer to a block that was previously

returned by an invocation of either malloc, calloc, or

realloc. If any other pointer is passed to realloc, the

results will be unpredictable.

• The following example illustrates a common usage of the

realloc function. In this example, an array of characters

(a string) is allocated using malloc and then subsequently

resized using realloc to allow an increase in the length of

the string.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 5 © Dr. Mark J. Llewellyn

Initial allocation only allocates 5

bytes 0 not enough room to hold

both my first and last names.

Reallocation using realloc increases the

allocation by 10 bytes, thus allowing enough

room for my last name in the string.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 6 © Dr. Mark J. Llewellyn

Rules To Know When Using realloc

• The C standard spells out several different rules that dictate

how the realloc function behaves:

1. When it expands a memory block, realloc does not

initialize the bytes that are added to the block, even if the

original block was allocated using calloc.

2. If realloc cannot expand a memory block as requested, it

returns a null pointer. The data in the original memory block

is unchanged.

3. If realloc is called with a null pointer as its first

argument, it behaves exactly as malloc.

4. If realloc is called with 0 as its second argument, it frees

the memory block.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 7 © Dr. Mark J. Llewellyn

Freeing Dynamic Memory Allocations

• When the malloc, calloc, and realloc functions

obtain memory, it is allocated from the computer’s heap

memory.

• Calling these functions too often or requesting very large

blocks of memory can exhaust the heap memory causing

the functions to return null pointers.

• Programs can also loose track of allocated memory blocks

through errors in programming logic. Such “lost memory”

space is typically not recoverable until the program

terminates, which means that such blocks are no longer

able to be allocated to any executing program, even though

they are not actually being used by any program.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 8 © Dr. Mark J. Llewellyn

Freeing Dynamic Memory Allocations

• To see how dynamically allocated memory can be “lost”

through lack of attention by a programmer; consider the

following scenario:

1. int *ptr1, *ptr2; //pointers to int

2. ptr1 = malloc(sizeof(int));

3. ptr2 = malloc(sizeof(int));

4. ptr1 = ptr2; //move ptr1

ptr1

ptr2

Effect of lines 2 and 3

ptr1

ptr2

Effect of line 4

After line 4 is

executed this

memory location is

inaccessible by the

program!

COP 3223: C Programming (Dynamic Structures – Part 2) Page 9 © Dr. Mark J. Llewellyn

The free Function

• C provides the free function in <stdlib.h> to be used by

the programmer to return memory no longer needed to the

heap.

• The prototype for this function is: void free (void *ptr);

• Using the free function is quite easy, simply pass it a pointer

to a memory block that is no longer needed and the system will

return it to the heap memory.

• The proper way to have handled the previous example would

be:
1. int *ptr1, *ptr2; //pointers to int

2. ptr1 = malloc(sizeof(int));

3. ptr2 = malloc(sizeof(int));

4. free(ptr1); //free int referenced by ptr1

5. ptr1 = ptr2; //reassign ptr1

COP 3223: C Programming (Dynamic Structures – Part 2) Page 10 © Dr. Mark J. Llewellyn

Dynamically Allocated Self-Referential Structures

• Dynamic storage allocation is extremely useful for building

many data structures common to an enormous range of

applications.

• Some data structures that are typically constructed using

dynamic memory are linked lists, stack, queues, trees, and

graphs. If you go on in Computer Science you will become

familiar with all of these data structures (and many more).

• We’ll introduce you this concept using the linked list as an

example, which can be applied to a very wide range of

problems.

• Data structures of this type are said to be made up of nodes. A

node is simply an object capable of holding some information.

For our purposes, think of a node as a struct.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 11 © Dr. Mark J. Llewellyn

Dynamically Allocated Self-Referential Structures

• The nodes of data structures that are self-referential simply

contain a member which is a pointer to another node of the

same type.

• The pointer in one node is used to point to the next node in

some logical ordering of the nodes.

• By chaining a number of nodes together using their pointer

member, you create a linked list.

• Conceptually a linked list looks like this:

null

COP 3223: C Programming (Dynamic Structures – Part 2) Page 12 © Dr. Mark J. Llewellyn

Dynamically Allocated Self-Referential Structures

• The one thing missing from the previous conceptual view of the

linked list, is that we need some way to know where the logical

beginning of the list is located. As you would expect, this is

done with a pointer. So, the complete conceptual picture of a

linked list actually looks like the one below:

null

ptr

There is no limit to the number of pointers that

might reference nodes in a linked list. Although not

common it would be possible to have a pointer

reference each node in the list. Normally, a single

node is used to traverse or “walk” a list using the

self-referential links to the next logical node. The

following example illustrated both extremes.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 13 © Dr. Mark J. Llewellyn

Notice the pointer used to move

down the list is being reassigned to
the value in the next field of the

current node.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 14 © Dr. Mark J. Llewellyn

Notice that since all the variables are

pointers to structures that the structure

pointer operator is necessary to

reference the various member fields in

the structure.

Each nodes next field is assigned to point to

(reference) the next node in the correct logical

order in which the list is to be maintained.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 15 © Dr. Mark J. Llewellyn

A Closer Look At The Example

• In the previous example, the list nodes are constructed
dynamically using malloc, one node at a time. The
resulting structure looks like the one shown below:

kraM

null

ptr1

letter

next

ptr2 ptr3 ptr4

COP 3223: C Programming (Dynamic Structures – Part 2) Page 16 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes

• The nodes of a linked list can be maintained in any logical

order that the programmer desires for the application at hand.

Alphabetical and numerical orderings are obviously quite

common, but any logical ordering can be maintained

(including random).

• Common operations on linked lists include, traversing the

list from one end to the other or partial traversing. This is

often referred to as “walking the list”. Inserting new

elements, deleting existing elements, and modify the

contents of existing elements are also common operations.

• Let’s first consider deleting a node from a list. Let’s suppose

in the initial list shown on the next page that we want to

delete the node containing 6.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 17 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Deletion

2 4 6 8 10 null

ptr

Initial list

2 4 6 8 10 null

ptr

Step 1 to delete 6: walk to the node containing 6 with a trailing pointer following us

currentprevious

COP 3223: C Programming (Dynamic Structures – Part 2) Page 18 © Dr. Mark J. Llewellyn

Step 2: set previous.next to current.next

2 4 6 8 10 null

ptr currentprevious

Step 3: free current node

2 4 8 10 null

ptr currentprevious

COP 3223: C Programming (Dynamic Structures – Part 2) Page 19 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Deletion

• Notice that our deletion of the node containing 6 occurred in

the middle of the list. What would happen if we needed to

delete the first or last node in the list? Would our technique

need modification?

• The answer is yes if we need to delete the first node in the

list. The answer is no if we need to delete the last node in the

list.

• So, deleting the first node in the list is a special case. It’s

illustrated on the next page, where we need to delete the

node containing 2.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 20 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Deletion

2 4 6 8 10 null

ptr

Step 1: walk puts ptr and current at same node

current

4 6 8 10 null

ptr

Step 2: set ptr to ptr->next and free current.

current

COP 3223: C Programming (Dynamic Structures – Part 2) Page 21 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes – Insertion

• Now let’s consider inserting a new node into a list.

• As before, we’ll need to walk the list to the correct insertion

point and we’ll maintain a trailing pointer.

• Notice that the insertion point will be between the current

pointer and the trailing pointer.

• The example on the following pages illustrates a typical mid-

list insertion. In this case, we want to insert a new node with

the value 5 in its proper location in the list.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 22 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Insertion

2 4 6 8 10 null

ptr

Initial list

2 4 6 8 10 null

ptr

Step 1 to insert 5: walk to the node containing 6 with a trailing pointer following us

currentprevious

COP 3223: C Programming (Dynamic Structures – Part 2) Page 23 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Insertion

2 4 6 8 10 null

ptr

Step 2: create new node.

currentprevious

5

new

2 4 6 8 10 null

ptr

Step 3: set previous-next to new and new->next to current.

currentprevious

5

new

COP 3223: C Programming (Dynamic Structures – Part 2) Page 24 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Deletion

• What would happen if we needed to insert a new first or last

node in the list? Would our technique need modification?

• The answer is yes in both cases this time.

• So, inserting a new first node in the list and a new last node

are both special cases. They are illustrated on the next

couple of pages, where we want to insert 1 and 11 into the

list.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 25 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Insertion

2 4 6 8 10 null

ptr

Step 1: insert 1 create new node (at beginning of the list).

1

new

Step 2: set new->next to ptr and ptr to new.

2 4 6 8 10 null

ptr

1

new

COP 3223: C Programming (Dynamic Structures – Part 2) Page 26 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes - Insertion

2 4 6 8 10 null

ptr

Step 1: insert 11 create new node (at end of the list).

Step 2: set new->next to current->next (null) and current->next to new.

2 4 6 8 10 null

11

newcurrentprevious

ptr previous current

11

new

COP 3223: C Programming (Dynamic Structures – Part 2) Page 27 © Dr. Mark J. Llewellyn

Manipulating Linked List Nodes

• The following example program combines all of these cases

into a single program that will build and maintain a linked

list in alphabetic ordering of the characters entered by the

user.

• It is a menu driven program that gives the user the choice of

inserting or deleting an element. The list is initially empty

and after each operation the list is drawn out so you can see

the effect of the operation.

• Again the program is too large to put into the notes (170

lines), only selected parts are shown, but the entire program

is available on the web site so download it an play around

with it.

COP 3223: C Programming (Dynamic Structures – Part 2) Page 28 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Dynamic Structures – Part 2) Page 29 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Dynamic Structures – Part 2) Page 30 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Dynamic Structures – Part 2) Page 31 © Dr. Mark J. Llewellyn

THE END

